모델 레지스트리

모델 레지스트리는 MLOps 라이프사이클에서 모델 버전을 관리하는 구성 요소입니다. 아티팩트를 추적하는 것을 넘어, 각 모델과 관련된 메타데이터를 추적하는 것이 책임입니다. 이 메타데이터에는 다음이 포함됩니다:

  • 성능
  • 매개변수
  • 데이터 계보

데이터 위상

모든 엔티티는 프로젝트에 속하며, 프로젝트에 액세스 권한이 있는 사용자만이 엔티티와 상호 작용할 수 있습니다.

Ml::Model

  • 이름 및 설명과 같은 모델에 대한 일반적인 정보를 보유합니다.
  • 각 모델은 후보가 로그되는 동일한 이름의 기본 Ml::Experiment를 가집니다.
  • 여러 Ml::ModelVersion을 보유합니다.

Ml::ModelVersion

  • 모델의 버전입니다.
  • 동일한 프로젝트, 이름 및 버전을 가진 Packages::Package에 연결됩니다.
  • 버전은 의미론적 버전을 사용해야 합니다.

Ml::Experiment

  • 비교 가능한 Ml::Candidates의 모음입니다.

Ml::Candidate

  • 모델 버전에 대한 후보자입니다.
  • 훈련 코드에 전달되는 보통 구성 변수 인자인 매개변수 (Ml::CandidateParams)를 여러 개 가질 수 있습니다.
  • 여러 성능 지표 (Ml::CandidateMetrics)를 가질 수 있습니다.
  • 사용자 정의 메타데이터 (Ml::CandidateMetadata)를 여러 개 가질 수 있습니다.

MLflow 호환성 레이어

GitLab 모델 레지스트리를 사용하는 데이터 과학자들을 위해, MLflow client에 대한 호환성 레이어를 제공했습니다. GitLab에서 MLflow 인스턴스를 제공하지는 않습니다. 대신 GitLab 자체가 MLflow의 인스턴스 역할을 합니다. 이 방법은 데이터를 GitLab 데이터베이스에 저장하며 사용자 신뢰성과 기능을 향상시킵니다. 호환성 레이어에 대한 사용자 설명서를 참조하세요.

호환성 레이어는 lib/api/ml/mlflow에서 MLflow rest API를 복제하여 구현되었습니다.

MLflow의 일부 용어는 GitLab에서 다르게 명명됩니다:

  • MLflow의 Run은 GitLab의 Candidate입니다.
  • MLflow의 Registered model은 GitLab의 Model입니다.

테스트 설정

MLflow를 사용하여 GitLab을 백엔드로 하는 스크립트를 테스트하려면 다음을 수행하세요:

  1. MLflow 설치:

    mkdir mlflow-compatibility
    cd mlflow-compatibility
    pip install mlflow jupyterlab
    
  2. 디렉토리에 mlflow_test.py라는 이름의 Python 파일을 만들고 다음 코드를 추가하세요:

    import mlflow
    import os
    from mlflow.tracking import MlflowClient
    
    os.environ["MLFLOW_TRACKING_TOKEN"]='<TOKEN>'
    os.environ["MLFLOW_TRACKING_URI"]='<your gitlab endpoint>/api/v4/projects/<your project id>/ml/mlflow'
    
    client = MlflowClient()
    client.create_experiment("My first experiment")
  3. 스크립트 실행:

    python mlflow_test.py
    
  4. 프로젝트 /-/ml/experiments로 이동합니다. 실험이 생성되어 있어야 합니다.

스크립트를 편집하여 구현하려는 클라이언트 메소드를 호출할 수 있습니다. 더 완벽한 예제는 GitLab 모델 실험 예제를 참조하세요.